PHYSIK INSTRUMENTE

Electromagnetic levitation for atomic resolution positioning

Rudolf Krüger Technology Center Magnetic Drives & Systems Dresden 16.11.2023

 \mathbf{PI}

Motivation Looking back at 2022...

15. Tagung 'Feinwerktechnische Konstruktion' 2022 | Dr. Christian Rudolf | © PI 2022

24

External

Why magnetic levitation (MagLev)?

Eliminating the restrictions of mechanical guiding elements and couplings

- Full control in six degrees of freedom
- Completely frictionless guiding no rolling elements, no lubrication, no air flow
- No stick-slip effects
- No abrasion or wear, no particle generation
- Vacuum compatibility

MagLev technology has the potential to achieve ultra-high precision in dynamic and continuous (maintenance free) operation!

Magnetic levitation at PI

PIMag6D

- Planar stage with six actuation coils
- 100 mm x 100 mm x 0,1 mm
- Up to 100 mm/s
- Resolution < 10 nm

Mag6D

- Planar stage with 144 PCBintegrated coils
- Decentralized drive and sensor modules
- 120 mm x 120 mm x 1.6 mm

MagLin 6D

- Linear stage with 6 DoF micropositioning capability
- Integrated electronics
- Powerless levitation
- 45 mm x 0.5 mm x 0.5 mm
- Resolution < 5 nm</p>

Background and motivation for the new development **Project overview for MetExSPM**

Metrological Express Scanning Probe Microscope

The task at hand...

... and specification requirements

Planar motion stage for sample positioning and scanning Motion range

- Motion range in XY plane = 12.7 mm x 12.7 mm
- Motion in Z = ±0.25 mm
- Rotary motion (roll, pitch and yaw) = ±0.25°

Dynamics

- Motion velocity (XY plane) = 10 mm/s
- Acceleration (XY plane) = 1 m/s²
- Bandwidth (1 μ m amplitude) \approx 100 Hz

Precision

Position resolution < 0.1 nm

The task at hand... ... and key challenges

Sensor system

- Sub-nanometer resolution sensors for 6 DoF measurements
- Precision and accuracy with respect to planar travel range
- Robustness against distance changes and rotation

Thermal effects and long-term stability

- Management of losses from active components (actuators and sensors)
- Powerless levitation
- Separation of force and metrology loops
- Ultra-low expansion materials (integration and interface design)

Architecture of the MagLev stage

- Decoupled force and metrology loops
- Metrology frame made from ultra-low expansion material
- Integrated mirrors for reference metrology
- Thermo-mechanical decoupling for mover frames

8

Actuator configuration

4x Bearing actuators for (near) powerless levitation (Z, rotX, rotY)

- Reluctance force actuators with integrated gravity compensation (for a mover mass of 1 kg plus a load of 100 g)
- Consistent points of force actuation on the mover
- Force constant k_i = 2.45 N/A
- Motor constant $k_M = 2.21 \text{ N/VW}$

4x Linear motors for long-stroke planar motion (X, Y, rotZ)

- Over-sized Lorentz force actuators for minimized losses
- Optimized for minimum cross-talk with Z-actuators
- Force constant k_i = 1.11 N/A
- Motor constant $k_M = 1.52 \text{ N/VW}$

*Lighter components (active) fixed to frame, darker components (passive) fixed to mover!

Thermal performance of XY-motors

Simulation of exemplary step-settle-motion for raster scanning application

- Maximum jerk determines step time for equal step size
- Step size: 1 μm and 100 nm
- Three different jerk values: 0.1 m/s³, 1 m/s³ and 10 m/s³

Findings

- The average power demand during a step is < 20 μW
- Considering the settling and measurement times, average power during a scan motion is even smaller
- Note that time values on the right only include step times and not the respective settling times

Metrology concept

- Optical encoders for XY-motion and rotation about Z
- Interferometers for Z-motion and tip-tilt (rotation about X and Y)
- Sensor redundancy for improved signal-to-noise ratio per DoF
- Completely passive mover with integrated mirror surfaces and custom linear gratings for planar motion

Encoder for X, Y and yaw (rotZ) Resolution and noise (at 64,000 interpolation and f_s = 10 kHz)

EMPIR C EVANCY The EMPIR Available as to Avoide the Experiment Alexandre for the Experiment Alexandre for the Empirical Alexandre for the Experiment Alexandre f

Encoder for X, Y and yaw (rotZ) Exemplary position measurement

- Raw sine-cosine-signals into interpolator, counts per SPI into C-702 controller (sample rate f_s = 10 kHz, no additional filters or data processing)
- P-752 piezo stage in open-loop mode (voltage ramp with 7 mV at 10 Hz)

Encoder for X, Y and yaw (rotZ)

Robustness against distance changes and angular misalignment

Sine and cosine levels of the 1 V_{pp} signal for single axis misalignment

Encoder for X, Y and yaw (rotZ) Robustness against distance changes and angular misalignment

Sine levels of the 1 V_{pp} signal for multi-axis misalignment

Encoder for X, Y and yaw (rotZ) Robustness against distance changes and angular misalignment

Resulting phase errors for multi-axis misalignment

Integration aspects of ultra-low expansion materials General issues

Different CTEs of glass and metal components

... in combination with brittle properties of glass and glass-ceramics

Why is this relevant?

- Thermal effects cannot be neglected! Sensors and actuators will generate a certain amount of heat!
- Active cooling would introduce additional disturbances (vibrations)

Critical mechanisms for equivalent stress in glass-ceramic components

- Expansion of metal inserts (and adhesives)
- Bolt pretension
- Expansion of the actuator frame

Metal inserts in ultra-low expansion glass-ceramic **Insert and interface design for actuator frame interface**

- Insert made from Invar (D = 6.3 mm with M3 thread)
- Epoxy-based adhesive (curing at room temperature with minimal shrinkage)
- Radial alignment via seal rings (acting as additional adhesive barriers)
- Protruding installation in glass-ceramic to allow bolt pretension

Thermo-mechanical decoupling of actuator and metrology frames General issues and solution approach for integration of brittle ultra-low expansion materials

Conflicting objectives result in compromise

- Minimal amount of thermally induced stress in glass-ceramic \rightarrow compliant coupling between actuator and metrology frames
- Dynamically precise actuation of the mover → stiff coupling between actuator and metrology frames

Solution approach

 Flexure-based decoupling mechanism allowing for deformation of the actuator frame (in the XY-plane) while maintaining a sufficiently stiff connection between actuator and metrology frame

Thermo-mechanical decoupling of actuator and metrology frames Simulation-based proof of concept

Simulation setup

- Flexures modelled via 6-DoF bushings with stiffness matrix
- Inserts and adhesives fully modelled
- Bolt pretension included in initial load step
- Evaluation of deformation and equivalent stress in glass-ceramic component for extended temperature range (±10 K)

Thermo-mechanical decoupling of actuator and metrology frames Simulation-based proof of concept

Findings (exemplary data for temperature +10 K)

- Force reaction significantly reduced from 130 N to < 4 N per insert
- Deformation of glass-ceramic reduced from 2 μm to < 40 nm
- Stress in glass-ceramic component reduced from 11 MPa to < 7 MPa note that this value corresponds to a base level due to
 expansion of insert, contribution of actuator frame deformation account to less than 1 MPa

Thermo-mechanical decoupling of actuator and metrology frames Impact on eigenmodes and frequencies of the mover

Acknowledgement and references

Acknowledgement

The presented work was carried out as part of the research project 20IND08 MetExSPM and has received funding from the European Metrology Programme for Innovation and Research, co-financed by the Participating States, and from the European Union's Horizon 2020 research and innovation programme.

- Funder name: European Metrology Programme for Innovation and Research
- Funder ID: 10.13039/100014132
- Grant number: 20IND08 MetExSPM

References

- [1] **Christian Rudolf**: Ist 2x3=3x2? Oder: Sind das noch Hexapoden? *15. Tagung Feinwerktechnische Konstruktion*, 13.10.-14.10.2022, Dresden.
- [2] **Rudolf Krueger, Rainer Gloess**: Magnetically levitated planar motion stage with atomic resolution for metrological highspeed scanning probe microscopy. *Proceedings of the euspen's 23rd International Conference and Exhibition*, 12.06.-16.06.2023, Copenhagen.

Physik Instrumente

Physik Instrumente (PI) GmbH & Co. KG Auf der Römerstraße 1 76228 Karlsruhe Germany

 Phone
 +49 721 4846-0

 E-mail
 info@pi.de

Please visit us at: www.physikinstrumente.de

in y D Blog

20231116_RKru_DGFT-Tagung_2023_PUBLIC.pptx ©2023 Physik Instrumente (PI) GmbH & Co. KG The use of these texts, pictures and drawings is only permitted with the permission of PI and only permitted with reference to the source.

External 16. Tagung "Feinwerktechnische Konstruktion" | Rudolf Krüger | © PI 2023

