Modellierung des elastischen mechanischen Verhaltens dünner Festkörpergelenke

M.Sc. Mario André Torres Melgarejo

13. DGFT-Tagung ,,Feinwerktechnische Konstruktion" Dresden, 26.-27. September 2019

Gliederung

- 1. Einleitung
- 2. Motivation
- 3. Modellierung von Festkörpergelenken
- 4. Nichtideale Festkörpergelenke
- 5. Ergebnisse
- 6. Ausblick

1. Einleitung

Abb. 1: Einfache Darstellung eines Festkörpergelenks

Festkörpergelenke

- spiel- und reibungsfrei
- hochreproduzierbare Bewegung
- vakuumtauglich und miniaturisierbar

Anwendungen

Abb. 2: Positioniersystem mit zwei translatorischen Bewegungen [1]

Abb. 3: Kippmechanismus eines Spiegels [2]

Abb. 4: Nachgiebiger Parallelgreifer [3]

Abb. 5: Monolitisches Wägesystem [4]

2. Motivation

Modellierung des elastischen mechanischen Verhaltens dünner Festkörpergelenke 13. DGFT-Tagung "Feinwerktechnische Konstruktion", 26.-27. September 2019

Seite 3

3. Modellierung von Festkörpergelenken

Elastisches Verhalten idealisierter Gelenke

- Abb. 7: Allgemeines Modell eines Festkörpergelenks
 - $\{F\} = [K]\{u_P\}$

Abb. 8: Ersatz-Starrkörpermodell eines Festkörpergelenks

Nachgiebigkeit

verteilte

$$\begin{cases} F_y \\ M_z \end{cases} = [\mathbf{K}] \begin{cases} u_y \\ \varphi \end{cases}, \ \delta = f(F_y, M_z)$$

konzentrierte

$$M = k_{\varphi} \cdot \varphi, \qquad \delta = 1/2$$

Analytische Modellierung

planare Betrachtung $k_{\varphi} = f(h(x), b, E), \quad x \in \left[\frac{L-l}{2}, \frac{L+l}{2}\right]$

typische Ansätze:

- Euler-Bernoulli-Balkentheorie
- Satz von Castigliano
- FEM-basierte Näherungsgleichungen

3. Modellierung von Festkörpergelenken Modellgleichungen

Gesamtlänge	L	15 mm
Gesamthöhe	Н	9 mm
Halbmesser	R	3 mm
Minimale Kerbhöhe	h	50 µm
Breite	b	10 mm
Elastizitätsmodul	Ε	71 GPa
Querkontraktionszahl	ν	0,33

Abb. 9: Festkörpergelenk mit Halbkreiskontur

Annahmen der Balkentheorie

- kleine Verformungen
- Bernoulli-Hypothese
- Saint-Venant-Prinzip
- Hookesches Gesetz
- Ebener Spannungszustand

Гаb. 2: Drehst	eifigkeit k_{φ}	nach vers	schiedenen	Modellen
----------------	-------------------------	-----------	------------	----------

Ansatz	Author	k_{φ} (Nmm/rad)
Euler-Bernoulli-Balkentheorie	Paros und Weisbord [7]	16,243
Satz von Castigliano	Lobontiu [8]	16,243
Kontinuumsmechanik	Tseytlin [9]	18,542
Theorie zur Modellierung größer Verfomungen stabförmiger Strukturen	Henning et al. [10]	16,173
	Linß et al. [11]	15,887

3. Modellierung von Festkörpergelenken Vergleich FEM- Ansatz - Modellgleichungen

Modellierung des elastischen mechanischen Verhaltens dünner Festkörpergelenke

13. DGFT-Tagung "Feinwerktechnische Konstruktion", 26.-27. September 2019

TECHNISCHE UNIVERSITÄT ILMENAU

Seite 6

3. Modellierung von Festkörpergelenken Abweichung zur Balkentheorie

Abb. 14: Relativen Abweichung des 3D-FEM-Modells zur Balkentheorie nach [7]

Bemerkungen

- > Fast lineares Verhalten für feste *b*/*h* Verhältnisse
- > Konvergierendes Verhalten für feste *h*/*R* Verhältnisse
- Abweichung von Balkentheorie zu 2D-Modellen unabhängig von b/h

$$\frac{k_{\varphi,3D}}{k_{\varphi,BT}} = F_{BT}^{3D} = F_{BT}^{2D} \left(\frac{h}{R} \right) \cdot F_{2D}^{3D} \left(\frac{h}{R}, \frac{b}{h} \right)$$

3. Modellierung von Festkörpergelenken Korrekturfaktoren

Abb. 14: Relativen Abweichung des 3D-FEM-Modells zur Balkentheorie nach [7]

Abb. 17: Relativen Abweichung des 3D-FEM-Modells zur Balkentheorie nach [7] mit Korrekturfaktoren F_{BT}^{2D} und F_{2D}^{3D}

Bemerkungen

- > Halbkreiskonturen werden nur durch 2 Parameterverhältnisse h/R und b/h beschrieben
- ▶ Reduzierung der Abweichung unterhalb von **0,25%** für $h/R \in [0,015;0,15]$ und $b/h \in [10;200]$

4. Nichtideale Festkörpergelenke Einflussparameter

Tab. 4: Parameterabweichungen für hohe und übliche Genauigkeit

Parameter	hoch	üblich	Parameter	hoch	üblich
Δh	±2,5 μm	±2,5 μm	Δx	±2,5 μm	±25 μm
ΔR	±2,5 μm	±25 μm	Δy	±2,5 μm	±25 μm
Δb	±2,5 μm	±25 μm	ΔE	±0,71 GPa	±1,42 GPa
$\Delta \theta_x$	±0,005 °	±0,017°	Δν	±0,001	±0,003
$\Delta \theta_y$	±0,005 °	±0,017 °	$\Delta \beta_{gz}$	±0,1 °	±0,1 °
Δx_c	±2,5 μm	±25 μm	$\Delta \beta_{gy}$	±0,1 °	±0,1 °

Abb. 19: Sensitivitätskoeffizienten

 $e_{gesamt} \approx 13,87 \%$

 $e_{\Delta h} pprox 12,92 \%$

Modellierung des elastischen mechanischen Verhaltens dünner Festkörpergelenke 13. DGFT-Tagung "Feinwerktechnische Konstruktion", 26.-27. September 2019

Seite 9

5. Ergebnisse

FEM-Modell zur Bestimmung der Drehsteifigkeit dünner Festkörpergelenke

- ✓ Normalspannung σ_z als Ursache der Abweichung $e_{k_{\varphi}} \approx 10 12\%$ zwischen 3D-Modellen und analytischen Gleichungen
- ✓ Korrekturfaktoren F_{BT}^{2D} und F_{2D}^{3D} für Gleichungen unter der Annahme des ebenen Spannungszustands für 0,015 < h/R < 0,15 und 10 < $\frac{b}{h}$ < 200
- Reduzierung der Abweichung zum 3D-FEM-Modell um einen Faktor von ca. 40
- ✓ Abweichung Δh als einflussreichste Paramater auf die Drehsteifigkeit Für $\Delta h = 2,5 \ \mu m \rightarrow e_{\Delta h} \approx 12,92 \ \%$

6. Ausblick

- > Validierung und Korrektur von Modellgleichungen für andere Konturen
- Entwicklung eines Messaufbaus und messtechnische Untersuchung
- Messtechnische Untersuchung anderer Lastbedingungen
- Modellierung und messtechnische Untersuchung des nichtlinearen Werkstoffverhaltens
- Modellierung und messtechnische Untersuchung der Oberflächenrauheit

Literaturverzeichnis

[1]	Harfensteller, F. (2016). Monolytische Mechanismen zur Realisierung hochpräziser Bewegungen. In: <i>10. Tagung</i> <i>"Feinwerktechnische Konstruktion",</i> Dresden, 2223. September, 2016.
[2]	Jansenn, H., Teuwen, M., Navarro, R., Tromp, N., Elswijk, E., Hanenburg, H. (2010). Design and prototype performance of an innovative cryogenic tip-tilt mirror". In: <i>Proc. SPIE 7739, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation,</i> 77394A.
[3]	Christen, G., Pfefferkorn, H. (1998). Nachgiebige Mechanismen: Aufbau, Gestaltung, Dimensionierung und experimentelle Untersuchung. In: <i>VDI-Berichte Nr. 1423</i> , S. 309-329.
[4]	Sartorius AG: monolithischen Wägesystemtechnologie. https://www.sartorius.com/en/company-de/about-sartorius-ag- de/history-de/1971-2000-de.
[5]	Darnieder, M., Pabst, M., Fröhlich, T., Zentner, L., and Theska, R. (2019). Mechanical properties of an adjustable weighing cells prototype. In: Proceedings of the 19th International Conference & Exhibition of the European Society for Precision Engineering and Nanotechnology.
[6]	Darnieder, M., Theska, R., Fröhlich, T., Pabst, M., Wenig, R., and Hilbrunner, F. (2017). Design of high-precision weighing cells based on static analysis. In: <i>Proceedings of the 59th Ilmenau Scientific Colloquium</i> .
[7]	Paros, J., and Weisbord, L. (1965). How to design flexure hinges. In: <i>Machine Design 25</i> , S. 151-156.
[8]	Lobontiu, N. (2003) Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton.
[9]	Tseytlin, Y. M. (2002). Notch flexure hinges: An effective theory. In: Review of Scientific Instruments 73 (9), S. 3363-3368.
[10]	Henning, S., Linß, S., Zentner, L. (2018). detasFLEX—A computational design tool for the analysis of various notch flexure hinges based on non-linear modeling. In: <i>Mechanical Sciences 9</i> , S. 389–404.
[11]	Linß, S., Schorr, P., and Zentner, L. (2017). General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges. In: <i>Mechanical Sciences 8</i> , S. 29-49.

Danksagung: Der Autor dankt der Deutschen Forschungsgemeinschaft (DFG) für die finanzielle Unterstützung des Forschungsprojekts mit den Fördernummern: TH845/7-1 und TH845/5-2

