

Charakterisierung von feinwerktechnischen Komponenten mit mechanischer Schockbelastung

Martin Iwanczik, Dr. Martin Brucke

DGFT Tagung 23.9.2016

"There is simply no substitute for knowing what you're doing" Jeff Case

Inhalt

- Zielstellung von Schocktests
- Wirkprinzipien zur Schockerzeugung
- Modellierung des Hopkinson Stab Prinzips
- Beispielapplikation
- Zusammenfassung

Zielstellung von Schocktests

Warum Schockbelastung? - Kalibrierung

z.B. Beschleunigungssensoren oder Schalter für Luft- und Raumfahrtanwendungen

Apollo 11 Absprengen von Treibstofftanks

Typische Beschleunigungen bis zu 2.000.000 m/s²

Zielstellung von Schocktests

Warum Schockbelastung? – Überlast / Überlebenstest von Komponenten

- Transport Standard DIN-EN 60068
- Schockbelastung in der Applikation z. B. Bahnanwendungen

		fest condition	g level (peak)	Duration of pulse (ms)
•	MIL Standard 810	A	500	1.0
•		В	1,500	0.5
•	→ tondonziall such für Automativa und Consumar Produkta	C	3,000	0.3
•		D	5,000	0.3
		E	10,000	0.2
		F	20,000	0.2
		G	30,000	0.12

Kundenwunsch:

Test von möglichst vielen MEMS Sensoren in 3 Raumachsen nach MIL 810 E und F

MEMS Struktur nach Schocktest

Wie können Stoßerreger eingeteilt werden?

- Impulsdauer und Beschleunigungsamplitude
- Arbeitsprinzip (Hammer-Amboss, Hopkinson Stab)

Hammer-Amboss-Prinzip

Hopkinson-Stab-Prinzip

- Einleitung eines Kraftimpulses in einen schlanken (Metall-)Stab
- Anregung einer elastischen Longitudinalwelle im Stab
- Wellenreflexion beschleunigt Prüfling am anderen Ende des Stabes

Elstar Schocktester

Grenzen des Hammer Amboss Prinzips

- > 100.000 m/s² extreme mechanische Belastung weit über den Festigkeitsgrenzen der Stoßpartner
 → Verschleiß, schlechte Reproduzierbarkeit, häufiger Service
- für breite Impulse hohe Massen nötig
 → große Strukturen
- Anregung von großen Strukturen mit Schocks f
 ührt zu Eigenschwingungen / Moden / Wellen
 → stark verzerrte Beschleunigungssignale

SPEKTRA HOP - HS

Grenzen des Hopkinson Stav Ennzips

- typische Applikation: sehr leichte DUT, sehr hohe Amplituden, kurze Signale
- a(t) hat pos. und neg. Beschleunigung, x000 Wiederholung bis die Welle im Stab abgeklungen ist
 → zu undefiniert f
 ür Materialtests

Fly Away Methode

• 1 einzelner positiver Impuls

Figure 1. Split Hopkinson Bar Fly-Away Apparatus

• → Ansatz: Erweiterung der Fly Away Methode für Schocktests

Modellierung des Hopkinson-Stab-Prinzips

Modellierung des Hopkinson-Stab-Prinzips

Modellierung Hopkinson Stab - Validierung

Messung mit Mitigator – 10 mm Korkmatte

170 km/s² @ 42 µs

168 km/s² @ 42 µs

Velocity	Projectile	Acceleration Amplitude	Sim. Pulswidth	Meas. Pulswidth	Dev. Sim./Meas. Pw.
17 m/s	53 g	170 km/s²	42 µs	42 µs	0 %
13,5 m/s	53 g	120 km/s²	46 µs	54 µs	-15 %
6 m/s	445 g	60 km/s²	120 µs	135 µs	-11%

- Variation der Stoßenergie mittels Geschwindigkeit und Projektilmasse im Modell und Vergleich mit Messung
- Anpassung der Steifigkeit im Stoßmodell ausreichend um bei Pulsbreite und Amplitude vergleichbare Werte zu erhalten (keine / geringe Abhängigkeit von der Verformungsgeschwindigkeit)

→ Stab und Stoßvorgang (Mitigator) gut modellierbar

www.spektra-dresden.com

Modellbildung "Fly Away"

Ziel: Ermittlung der maximalen Masse des Fly Aways → Maximierung der Prüflingsanzahl

Beispielapplikation

Erreichte technische Daten: 100.000 m/s² @ 120 μs 200.000 m/s² @ 90 μs Anzahl der Prüflinge: > 50 (3 mm x 3 mm)

www.spektra-dresden.com

Zusammenfassung

- Erfolgreiche Anwendung der "Fly Away" Methode für Schocktests
- derzeit beste technische Möglichkeit neuer Stand der Technik Annäherung an MIL Std

• Erfolgreiche Modellbildung → optimierbar / modifizierbar

APS Dynamics, Inc. 32124 Paseo Adelanto, Suite 3 US San Juan Capistrano, CA 92675 Phone: +1 (949) 234 9791 Fax: +1 (760) 683 3184 www.apsdynamics.com

SPEKTRA Schwingungstechnik und Akustik GmbH Dresden

Heidelberger Str. 12 · DE - 01189 Dresden

Phone: +49 351 400 24 0 · Fax: +49 351 400 24 99

www.spektra-dresden.com