Neue Möglichkeiten zur additiven Fertigung von metallischen Mikrobauteilen

Michael Kniepkamp
Dresden | 12. November 2015

Agenda

- Einführung in die additive Fertigungsverfahren und den SLM Prozess
- Vergleich von SLM und μSLM Prozess
- Mechanische Eigenschaften beim μSLM
- Oberflächenqualitäten beim µSLM
- Beispielbauteile
- Zusammenfassung

Was ist additive Fertigung?

Abtragende Prozesse

- Entfernen von Material
- "top down" Prinzip
- Aus Halbzeugen
- Benötigt Werkzeuge

Formative Prozesse

- Teil in einem Schritt gegossen
- Verflüssigtes Ausgangsmaterial
- Benötigt Formwerkzeuge

Additive Prozesse

- Schichtweises Auftragen von Material
- "bottom up" Prinzip
- Benötigt keine zusätzlichen Werkzeuge

Pulverbett basiertes Verbinden Begriffsdefinitionen

	Abkürzung	Bezeichnung	Kunststoff	Metall
VDI 3404	LS	Laser-Sintern / laser sintering	Х	х
	LBM	Laserstrahlschmelzen / laser beam melting		х
	EBM	Elektronenstrahlschmelzen / electron beam melting		х

u	SLM	Selektives-Laser-Schmelzen / selective laser melting		Х
Markenbezeichungen	SLS®	Selektives-Laser-Sintern / selective laser sintering	Х	х
	SHS TM	Selective Heat Sintering x		
	DMLS®	ektes Metall-Laser-Sintern / direct metal laser sintering		х
	LaserCUISING®			Х
	DMP	Direct Metal Printing		Х
Σ	LMF	Laser Metal Fusion		Х

	μSLM	Mikrolaserschmelzen		Х
--	------	---------------------	--	---

Prozessablauf Selektives Laserschmelzen

Quelle: eigene Darstellung nach Poprawe 2005

Aktuelle Trends in der Anlagenentwicklung

Bauraum Schichtstärke Fokusdurchmesser

Entwicklungsziel

Bildquellen: EOS, Concept Laser

Auflösung beim Selektiven Laserschmelzen

Auflösung in XY-Richtung

Auflösung in Z-Richtung

Treppenstufeneffekt

Herausforderungen beim Mikrolaserschmelzen

Pulverauftragsmechanismus

Partikelgrößenverteilung beim SLM und µSLM Prozess

Mikrolaserschmelzen erfordert feinere Pulver, um kleinere Schichtstärken zu realisieren. Diese neigen jedoch zur Agglomeration, was eine Herausforderung beim Applizieren von diskreten Pulverschichten darstellt.

Prozessparameter beim SLM Prozess

Linienenergie

$$E_L = \frac{P_L}{v_s}$$

Flächenenergie

$$E_F = \frac{P_L}{v_s h_s}$$

Als Ausgangswerkstoffe kommen einkomponentige Metallpulver zum Einsatz. Diese werden durch den Laserstrahl komplett aufgeschmolzen

Prozessfenster beim Mikrolaserschmelzen

Prozessfenster beim µSLM für den Edelstahl ST 1.4404 / 316L

Mechanische Eigenschaften: Relative Bauteildichte

Relative Dichte archimedisch bestimmt bei konstanter Linienenergie

Ab einer Linienenergie von 0,05 J/mm können dichte Volumenkörper aufgebaut werden. Bei steigender Laserleistung können Dichten von mehr als 99 % erreicht werden

Schliffprobe 99,30 % rel. Dichte

Mechanische Eigenschaften: Zugversuch

Spannungs-Dehnungs-Verlauf im Zugversuch

	μSLM	Konventionell
Zugfestigkeit [MPa]	710 – 714	500 – 700
Bruchdehnung	39 - 52	>40
Dehngrenze [MPa]	628 – 646	>200

Mechanische Eigenschaften vergleichbar zu konventionell hergestellten Bauteilen.

Oberflächenqualität SLM

Oberflächen µSLM: Vertikale Flächen

Oberflächen µSLM: Horizontale Flächen

Wirtschaftlichkeit AM

"individualization for free"

"complexity for free"

µSLM Beispielbauteile

Durchmesser: 5 mm

Höhe: 8 mm

Kanaldurchmesser: 0,4 mm

Bauzeit: 3 h

Minimale Wandstärke: 60 µm

Aspektverhältnisse > 200 möglich

Bauzeit: 1h

Höhe: 28 mm Breite: 6 mm

Bauzeit: 6,5 h

Einsatz bei der Herstellung von Prototypen und Kleinserien

Zusammenfassung

Stand der Technik µSLM:

- Auflösung gegenüber konventionellem SLM Verfahren deutlich gesteigert
- Relative Bauteildichten von > 99 % möglich
- Mechanische Eigenschaften vergleichbar mit konventionell hergestellte Bauteilen
- Bessere Oberflächenqualitäten als beim konventionellem SLM Verfahren
- Aktueller Einsatz bei Prototypen und Kleinserien

Ausblick:

- Erweiterung der Materialpalette
- Steigerung der Prozesssicherheit
- Steigerung der Produktivität

Vielen Dank für Ihre Aufmerksamkeit!

Bei Fragen stehen wir Ihnen gerne zur Verfügung.

