Neue Möglichkeiten zur additiven Fertigung von metallischen Mikrobauteilen

Michael Kniepkamp Dresden | 12. November 2015

Agenda

- Einführung in die additive Fertigungsverfahren und den SLM Prozess
- Vergleich von SLM und µSLM Prozess
- Mechanische Eigenschaften beim µSLM
- Oberflächenqualitäten beim µSLM
- Beispielbauteile
- Zusammenfassung

Was ist additive Fertigung ?

Abtragende Prozesse

- Entfernen von Material
- "top down" Prinzip
- Aus Halbzeugen
- Benötigt Werkzeuge

- Teil in einem Schritt
 gegossen
- Verflüssigtes Ausgangsmaterial
- Benötigt Formwerkzeuge

Additive Prozesse

- Schichtweises Auftragen von Material
- "bottom up" Prinzip
- Benötigt keine zusätzlichen Werkzeuge

Pulverbett basiertes Verbinden Begriffsdefinitionen

	Abkürzung	Bezeichnung	Kunststoff	Metall
VDI 3404	LS	Laser-Sintern / laser sintering	х	х
	LBM	Laserstrahlschmelzen / laser beam melting		х
	EBM	Elektronenstrahlschmelzen / electron beam melting		х

Markenbezeichungen	SLM	Selektives-Laser-Schmelzen / selective laser melting		x
	SLS®	Selektives-Laser-Sintern / selective laser sintering	х	x
	SHS™	Selective Heat Sintering	х	
	DMLS®	Direktes Metall-Laser-Sintern / direct metal laser sintering		x
	LaserCUISING®			x
	DMP	Direct Metal Printing		х
	LMF	Laser Metal Fusion		х

μSLM

Mikrolaserschmelzen

Х

Prozessablauf Selektives Laserschmelzen

Quelle: eigene Darstellung nach Poprawe 2005

Aktuelle Trends in der Anlagenentwicklung

Bildquellen: EOS, Concept Laser

Auflösung beim Selektiven Laserschmelzen

Herausforderungen beim Mikrolaserschmelzen

Mikrolaserschmelzen erfordert feinere Pulver, um kleinere Schichtstärken zu realisieren. Diese neigen jedoch zur Agglomeration, was eine Herausforderung beim Applizieren von diskreten Pulverschichten darstellt.

Prozessparameter beim SLM Prozess

Prozessfenster beim Mikrolaserschmelzen

Mechanische Eigenschaften: Relative Bauteildichte

Ab einer Linienenergie von 0,05 J/mm können dichte Volumenkörper aufgebaut werden. Bei steigender Laserleistung können Dichten von mehr als 99 % erreicht werden

Mechanische Eigenschaften: Zugversuch

Oberflächenqualität SLM

Wirtschaftlichkeit AM

µSLM Beispielbauteile

Mikro-Fluidmischkammer

- Durchmesser: 5 mm
- Höhe: 8 mm
- Kanaldurchmesser: 0,4 mm
- Bauzeit: 3 h

- Minimale Wandstärke: 60 µm
- Aspektverhältnisse > 200 möglich

• Bauzeit: 6,5 h

Einsatz bei der Herstellung von Prototypen und Kleinserien

Bauzeit: 1h

٠

Zusammenfassung

Stand der Technik µSLM:

- Auflösung gegenüber konventionellem SLM Verfahren deutlich gesteigert
- Relative Bauteildichten von > 99 % möglich
- Mechanische Eigenschaften vergleichbar mit konventionell hergestellte Bauteilen
- Bessere Oberflächenqualitäten als beim konventionellem SLM Verfahren
- Aktueller Einsatz bei Prototypen und Kleinserien

Ausblick:

- Erweiterung der Materialpalette
- Steigerung der Prozesssicherheit
- Steigerung der Produktivität

Vielen Dank für Ihre Aufmerksamkeit!

Bei Fragen stehen wir Ihnen gerne zur Verfügung.

Prof. Dr.-Ing. Eberhard Abele Prof. Dr.-Ing. Joachim Metternich Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen Technische Universität Darmstadt

Otto-Berndt-Straße 2 64287 Darmstadt

 Tel.:
 +49 6151 16-20102

 Fax:
 +49 6151 16-20087

 E-Mail:
 info@ptw.tu-darmstadt.de

 Internet:
 www.ptw.tu-darmstadt.de