

Einführung von akustischen High-End-Systemen in die Serienfertigung

Thomas Meyer

Manager

Manufacturing Technology and Platforms

15.10.2014

Premium-Produkte @ Sennheiser

Quelle: Sennheiser Brandzone

Scope

Quelle: Sennheiser Brandzone

Situation:

Anspruchsvolle Technologie trifft auf Kostendruck

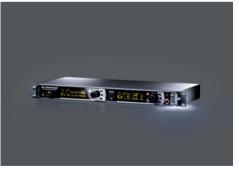
Quelle: www.chefkoch.de

Bedingung: Moderate Stückzahlen

Viele Produkte/Varianten

Quelle: http://foreverkaizen.com/?p=163

Mögliche Lösungen:


Lean Prozesse

Automatisierung

Angewandte Produktionstechnik bei Sennheiser

Kategorien	Anteil Werkstatt Fertigung	Anteil U-Zellen Fertigung	Anteil Automation Fertigung	produzierte Mengen p. A	Technologien + Plattformen
High-End Produkte (Zykl. 5-20J)	40%	50%	10%	< 200K	
Mid-Range Produkte (Zykl. 4-8J)	20%	50%	30%	< 800K	chnik chanik nik gstechnik
Consumer Produkte (Zykl. 1-4J)	0%	20%	80%	> 2.000K	Akustik Digitaltechnil Feinmechan Prüftechnik

Quelle: Sennheiser Brandzone

Produktionstechnik bei SE, Stärken und Schwächen

Fertigungs system	Anwendung	Aufwand Investition	Aufwand Bedienung Wartung	Aufwand Rüsten
vernetzte Automation	Herstellung Baugruppen & Einzelteile	100%	25%	30%
getaktete U-Zellen	Montage Endmontage Test Verpackung	40%	50%	20%
Werkstatt- fertigung	Einzelteile & Test	20%	100%	50%

Fettschrift=Vorteil

Quelle: Sennheiser Produktion

Produktion in Hochlohnländern

Trends, Chancen und Risiken

Trend und Chance

- Einfache Bedienung und stabile Prozesse im Montageprozess
- Automatisierte Herstell- und Prüfprozesse werden immer leistungsfähiger und können zunehmend auch für höchste Produktansprüche eingesetzt werden
- Wenn Automation, dann mehr Integration von Teilefertigung und Montage
- Reduzierung Bedienzeiten und Nicht-Bereit-Zeiten in Richtung autonomer
 Betrieb von Maschinen
- Reduzierung Bestände im Wertstrom (one piece flow)
- Reduzierung Durchlaufzeit (time to customer)
- Downsized Products

Risiken

- Lebenszykluszeiten der Produkte nehmen ab
- Kundenanforderungen der Zukunft sind nicht sicher vorhersehbar
- Langfristige Auslastung von Investitionen ist unsicher

Quelle: www.business2community.com

Der Schritt zur Automatisierung

Erfolgsfaktoren, Anforderungen an das Engineering

- Wenig zugekaufte Wertschöpfung bei Teilen
- Handarbeit zulassen, wo Handarbeit sinnvoll

- Keine Kopie der Handarbeitsprozesse für die Automatisierung verwenden
- Konzepte adaptierbar an die Kundenwünsche der Zukunft
- Know-How Integration (Design / Prozess / Maschine)
- Neue Technologien, Cross Industrial Scouting, Nutzen was verfügbar ist

Einführung High-End Produkt, Kleinserien

Kleinserienbau

Freigabe

Prototyp HE-Produkt

Bewertung Produktidee mit Schlüsselkunden

Vorstellung
Design + Funktionen

Iterative Optimierung der Funktionen und Prozesse

Montage Simulation im Cardboard

Start HE-Produkt

Verkaufsstart

Fokus: 1A Qualität

Werkstatt-Fertigung

U-Zellen-Montage

Kapazität 50 Stück p. Wo.

Viele Prüfschritte >> Lernen

Optimierung Abläufe

Optimierung Effizienz

HE-Produkt Serie

Fokus: 1A Qualität

Serienbau

Freigabe

Kundentakt 500 St. p. Wo.

Lean Einzelteilfertigung

Lean U-Zellen:

Baugruppenmontage

Endmontage

Endprüfung

Verpackung

Ideal:

One piece flow @ lowest cost

HE: Abkürz. für High-End

Erweiterte High-End Produktfamilie mit Automatisierungsanteil

Erweiterte HE-Produktfamilie

HE-Produkt wurde im Markt erfolgreich eingeführt

Positive Prognose für nachhaltiges Marktwachstum

HE-Produkt ist wirtschaftlich / strategisch interessant

Aus Einzelprodukt wird eine Produktfamilie

Automatisierung sorgt für verbesserte Effizienz, dort wo es lohnt! (Skaleneffekte)

ROI < 2 Jahre für Investitionen

HE: Abkürz. für High-End

Schwerpunkte Automation

- Akustische Systeme
- Leiterplatten
- Kabelfertigung
- Prüftechnik
- Zerspanungstechnik

Beispiel: Montage Baugruppe Magnetsystem

Prozesse und Kosten im Vergleich

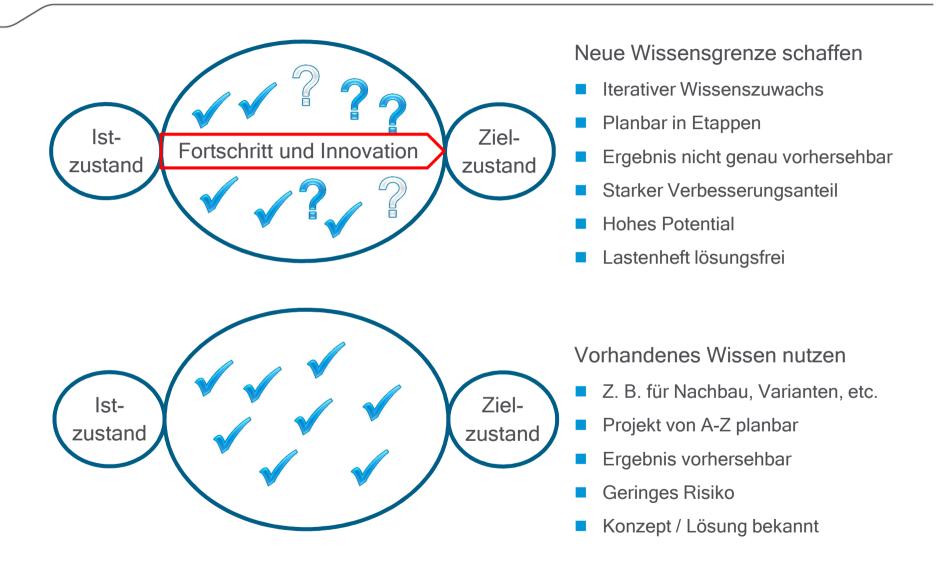
	Magnetsystem genietet Rundtisch	Magnetsystem 1K-geklebt Vollautomat	Magnetsystem 1K-geklebt Vollautomat	gespritztes Magnetsystem, integrierter Vollautomat
Investition Ausrüstung	60K€	1,0 Mio. €	600 K€	700 K€
Kundentakt (Teile / Std.)	200	1440	580	400
Bedienerzeit	100%	30%	40%	10%
Prozess	Man. Teile fügen Autom. nieten Magnetisieren	Autom. Teile fügen Klebstoff dosieren Induktiv härten Bauteile kühlen Magnetisieren	Autom. Teile fügen Klebstoff dosieren Thermisch härten Bauteile kühlen Magnetisieren	Autom. Teile fügen Niet im WKZ spritzen Magnetisieren
Bild				Projekt in Planung

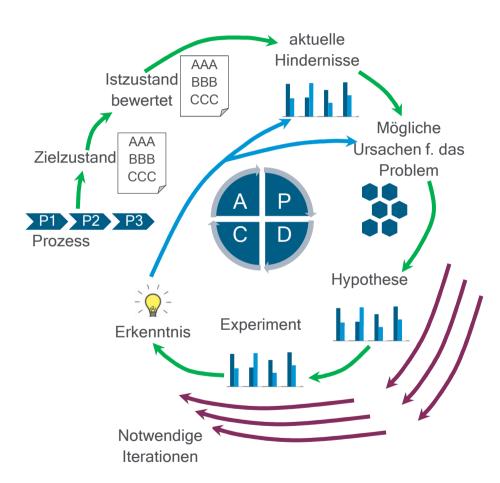
Quelle: Sennheiser Produktion

Prozess "Feindraht kontaktieren"

Lösungskonzepte im Vergleich

	Ultraschall- Drahtbonder	Thermoden- Drahtbonder	Lötdraht- automat	Diamand- Drahtbonder
Investition / Station	180 K€	70K€	Nicht bekannt	15K€
Zykluszeit / Bond	< 1,0 Sek.	3.0 Sek.	5,0-10,0 Sek.	3,0 Sek.
Material	Al-Draht, Cu-Draht 50-150μm	Cu-Draht 20-150μm	Cu-Draht 100-300μm	Cu-Draht 20-70μm
Vorteil	Punktschweißung sehr zuverlässig Hohe WKZ-Standzeit High Speed	Punktschweißung Hohe Bondenergie	Nahtlötung Variable Lotmenge	Punktschweißung Einfach Zuverlässig Günstig
Bild				


Quelle: Sennheiser Produktion



Projektarten in der Technologie-Entwicklung

Iterativer, gerichteter Wissenszuwachs mit der Kata-Methode

- Der Istzustand beschreibt den aktuellen Prozess, bewertet nach Kriterien und sagt genau wo man aktuell steht
- Identifizierte Hindernisse werden bewertet und priorisiert
- Mindestens 3 ernsthafte Lösungsansätze für ein Problem gehen in die Verifizierung
- Die Hypothese beschreibt die erwartete Verbesserung für die nächste Iteration
- Aus dem Experiment wird notwendiges Wissen generiert, weitere Hindernisse werden ggf. aufgedeckt, Hypothesen werden bestätigt oder verworfen
- Der angestrebte Zielzustand soll möglichst vollständig erreicht werden
- PDCA-Zyklen werden in "Sprints" organisiert (Scrum-Methode)

Ziele Engineering und Ausblick

Wir schaffen Innovation

- Der Technologievorsprung im Vergleich zu Asien muss gehalten werden
- Innovationen liefern die den Kunden begeistern
- Hohe Realisierungsgeschwindigkeit
- Kreative Zerstörung der eingetretenen Pfade

Quelle: http://webshop.vda.de

Wir schaffen Vertrauen

- Die Marke Sennheiser stärken
- Vertrauen wächst dank Qualität und Liefersicherheit
- Nachhaltiges Handeln durch Werterhalt und Effizienzgewinn
- Partnerschaften für schnelle und nachhaltige Kompetenzerweiterung
- Flexibles Projektmanagement gesteuert durch realen Erkenntniszuwachs

5 Minuten Diskussion und Fragen

