

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E: Chemical Information Processing

Cfeed CENTER FOR ADVANCING ELECTRONICS DRESDEN

Chemical integrated circuits

A. Richter Institute of Semiconductors and Microsystems Polymeric Microsystems

7. Tagung "Feinwerktechnische Konstruktion" Dresden

November 6, 2013

Path E: Chemical Information Processing

Why chemical information processing ?

Research challenges

Diagnostic chemical ICs

Why chemical information processing

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Electronic IT and underlying semiconductor industry:

dominating our professional and private live

Education, Science, Automotive, Industry, Energy, Medical, Aviation, IT

Devices World \$46B / Europe \$ 2.9B

Semiconductors

World \$ 256B /

Europe \$41B

Materials World \$ 42B / Europe \$4B

Source DECISION, ESIA, Future Horizons, IMF, WSTS -2010

DRESDE concep

Why chemical information processing

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Another important carrier of information

- cooking
- medicine
- chemical synthesis
- manufactoring industry

 \Rightarrow Matter

• . . .

Why chemical information processing

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Chemical information processing: \Rightarrow basic principle of living organisms

Unrivalled properties

- performance
- resilience
- energy efficiency
- multi-functional
- self-learning
- . . .

\Rightarrow inspiration source

rethink / optimize current information technology

Source duden.de, magicalnaturetour, TUD

Path E: Chemical Information Processing

CIP itself is most interesting as

- beyond CMOS technology
- More than Moore approach

Problem:

 no suitable approaches to realize a hardware for chemical information technology

Aim :

Foundation of IC-based chemical information processing

Path E: Chemical Information Processing

IT systems

Solving chemical problems with chemicals as carrier of information

Applications (examples)

• computer-aided design of chemicals, catalysts, nanomaterials ...

Source: biomedicalcomputationreview.org

Path E: Chemical Information Processing

IT systems

Solving chemical problems with chemicals as carrier of information

Applications (examples)

- computer-aided design of chemicals, catalysts, nanomaterials ...
- simulation / reconstitution of complex biological functions and systems

Objectives

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

IT systems

Solving chemical problems with chemicals as carrier of information

Applications (examples)

- computer-aided design of chemicals, catalysts, nanomaterials ...
- simulation / reconstitution of complex biological functions and systems
- revolutionize analytics and medical diagnostics
 - \Rightarrow change of methodology towards processing of big data
 - ⇒ key for next generation methods of molecular medicine and gene technology

Chemical design of nanomaterials

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Chemical design of

nanomaterials

DRESDEN

concept

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E: Chemical Information Processing f C **Nanomaterials** ~ 100 nm \rightarrow 2D nanostructures \rightarrow 3D nanostructures Monolith **Railed bridge** Slotted cross Stacked cross Square nut

November 6, 2013

Nature 440, 297–302 (2006)

Research challenges

Cluster of Excellence "Center for Advancing Electronics Dresden" Path

Path E: Chemical Information Processing

Main topics

Responsible towards specific chemicals

basic active components of CIP

multiple types of information

Research challenges

Cluster of Excellence "Center for Advancing Electronics Dresden" Pat

Path E: Chemical Information Processing

Main topics

Responsible towards specific chemicals

basic active components of CIP

multiple types of information

Path E: Chemical Information Processing

Necessary:

Large response towards chemical stimuli

\Rightarrow phase transition materials

 \Rightarrow drastic changes in:

- optical properties
- mechanical properties
- volume, conformation

 \Rightarrow stimuli-responsive polymers

Physical value (T, c, pH)

Research challenges

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E:

Path E: Chemical Information Processing

Main topics

Components

Carriers of information Responsible towards specific chemicals

basic active components of CIP

multiple types of information

Components

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E: Chemical Information Processing

Phase transition motor proteins

Thermodynamic phase transition components

Chemical transistor

- regulates a liquid flow depending on the threshold concentration of a certain chemical

- Other components: pressure sources, capacitors, memristors, switches . . . \Rightarrow foundations of design, technology, theory November 6, 2013

Components

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E: Chemical Information Processing

Phase transition

motor proteins

Cargo systems on molecular level \Rightarrow non-diffusive transport

- a basic moving system in living organisms
 → muscles
 - \rightarrow cell division
- Motor protein walks on a microtubule
 - \Rightarrow able to transport cargo vesicles

Source: youtube

Components

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E: Chemical Information Processing

Phase transition

motor proteins

Cargo systems on molecular level \Rightarrow non-diffusive transport at nanoscale

- a basic moving system in
 - living organisms
 - \rightarrow muscles
 - \rightarrow cell division

© Diez Lab, TU Dresden

\Rightarrow controlled transport in IC channels

November 6, 2013

Research challenges

Cluster of Excellence "Center for Advancing Electronics Dresden" Path E:

Path E: Chemical Information Processing

Main topics

Components

Carriers of information

Responsible towards specific chemicals

basic active components of CIP

multiple types of information

Carriers of information

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

State of the Art: Computing with single type of reaction in a chamber

"aA + bB = cC + dD"

thought like electronic IP

Our Approach : *Multiple types of information*

- "multi-dimensional"
- closer to nature

"aA + bB = cC + dD" "eE + fF = gG + hH" . .

"wW + xX = yY + zZ"

Kinds of chemical computing:

- reaction-diffusion
- conformational
- DNA computing

Example: DNA computing

Systemic approach

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Distributed reactions; control via control unit a) massive parallel, b) cascade, c) single molecule

Diagnostic chemical ICs

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Medicine

 ⇒ since 1990 scientists want to introduce the computational power of IC-based systems into medical diagnostics
 → Lab on a Chip approach

Next Generation techniques in molecular diagnostics /gene technology: ⇒ have to base on big data volumes

 \Rightarrow key technology: high-throughput LoC

Problem:

LoC technology of less efficiency ⇒ no suitable large-scale integration technologies

 \Rightarrow reasons discussed controversially

System architecture

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Microprocessor-based

Von Neumann Computer

- CU & EU combined on a single IC, the CPU
- both process electronic information
 ⇒ same basic components (transistors)

System architecture

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Micropneumatic LoC system Today's LoC technology: \Rightarrow dominated by MEMS principle **Control unit Microchip** Electro-Execution Memory mechan Computer data unit transduce Interface (instructions, data, power) Input/Output unit **External** fluidic electronic power supply DRESDEN © Disney concept

To control the LoC

- Computer + control software \Rightarrow electronic instructions
- transducer $electronic \rightarrow mechanical instructions$
- \Rightarrow different types of components necessary
- \Rightarrow CU no part of IC
- \Rightarrow strong limitation of integration degree \rightarrow no scalability

Idea: using only one type of carrier of information

 \Rightarrow LoC as microprocessor

Idea – chemical integrated circuits

© Disney

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Basic questions

Which carrier of information? ⇒ chemical information (concentrations)

Which components?

 \Rightarrow chemical transistors and other chemically activated devices

Which monolithic fabrication technology?

\Rightarrow Chemical microprocessors

Chemical Transistor Adv. Mater. **21** (2009) 979

November 6, 2013

Path E: Chemical Information Processing

• Layer by layer: overlapping, micro-structured layers of different polymeric materials

Substrate

- \Rightarrow Hot embossing, Laserablation
- cross-linked phase-changing polymers \Rightarrow photo lithography
-
- uncross-linked phase-changing polymers \Rightarrow printing technologies
- \Rightarrow Complex monolithic ICs with thousands of components

Hot embossing

IC control and components

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

IC processes two types of signals:

- chemical control signals
- chemical data signals

\Rightarrow Parts of the aqueous process media

Control signal:

- binary chemical information
 - \Rightarrow binary concentration of the water
 - c_{H20} = 0: water is not applied
 - c_{H20} = 1: water is applied

Data signal:

- can be analogue signal, *e.g.* concentrations of sample, analyte
- processing: mixing reactions results , e.g. change of fluorescence intensity, observed with established optical methods

IC control and components

concept

IC control and components

IC for high-throughput sampling

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Sampling

most frequent task in medical diagnostics / life science

- single molecule detection
- immun response
- toxity
- ...

Standard laboratory

Performed manually in large pipetting series

Task:

Investigation of 48 samples towards 48 properties:

- manual investigation time: 3 ... 4 months
- IC-based investigation time: 3 ... 4 hours
- IC reduces need for chemicals by factor 1,000

Path E: Chemical Information Processing

Principle

- \Rightarrow simultaneous execution of 2,304 test
- \Rightarrow parallelity is reason of reduction of test time

Chemical [48x48] sampling IC consisting of 7.012 chemical transistors, © Richter lab

IC for high-throughput sampling

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Principle

Chemical [48x48] sampling IC consisting of 7.012 chemical transistors, © Richter lab

Concept

Cluster of Excellence "Center for Advancing Electronics Dresden"

Path E: Chemical Information Processing

Chemical ICs

- Introduce the concept of microprocessors into microfluidics
 - \Rightarrow strong increase of system integration and functionality
- First LoC concept which is fully scalable
 ⇒ base of a microfluidic "Moore's law"
 ⇒ in microelectronics: most important
 factor of success

Chemical IC for long-term investigations [Lab Chip, **12** (2012) 23, 5034]

Chemical IC with integrated pressure sources [*Adv. Sci. Technol.*, 81 (2013), 84]

Path E: Chemical Information Processing

Science

S. Diez, TU Dresden, BCube
A. Eychmüller, TU Dresden
R. Jordan, TU Dresden
F. Jülicher, MPI PKS Dresden
M. Mertig, KSI Meinsberg
S. Siegmund, TU Dresden
J.-U. Sommer, IPF Dresden
O. Tiebel, Uniklinikum Dresden
B. Voit, IPF Dresden

Engineering

J.W. Bartha, TU Dresden C. Fetzer, TU Dresden W.-J. Fischer, TU Dresden, FhG IPMS G. Gerlach, TU Dresden A. Richter, TU Dresden R. Schüffny, TU Dresden Research Group Leaders: Path E + ESF Research Group ChemIT Andreas Voigt Luis Pedrero

Research Group DICS Katrin Ferse

27 PhDs/Postdocs

Deutsche Forschungsgemeinschaft DFG

STAATSMINISTERIUM

UND KUNST

DRESDEN concept

European Union European Social Fund Investing in jobs and skills

Path E: Chemical Information Processing

Thank you !

Nano smileys made by DNA origami

