Saia-Burgess Dresden GmbH

A member of Industry Division / Business Unit Actuators

J. Gaßmann, A. Schütze – 11/2009

History – main steps

1992	Founding of Saia-Burgess Electronics GmbH Dresden
1992 - 1995	Transfer of motor production lines from Murten to Dresden
1995	First linear motor (UBL)
1995	Reconstruction of main production shop
1996	First step into the automotive market (ELD)
1998	Establishment of JV with Smart in China
2001	Transfer of the automotive products within the Saia-Burgess Group and concentration on industry products
2003	Assembly facilities established in Poland Establishment of Saia manufacturing facility in Guangzhou/China
2004	Acquisition of Stegmann Actuators and Motor gearbox program
2005	Acquired by Johnson Electric

Range of products

Linear / Rotational Stepper and Synchronous Motors

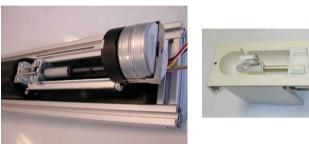
AC and DC Solenoids

Gearboxes

Water / Gas valve actuators

Drive electronics

Subassemblies combining parts or all of the above

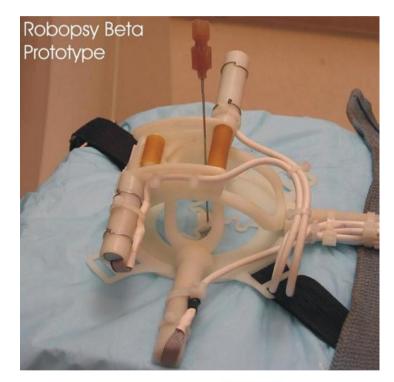


Medical projects

- Heparin pump for Fresenius
 - Electronic control unit
 - Gear motor with spindle drive

- Atomizer for drug inhalation (Microflow/Pfeiffer)
 - Dosing unit with electronic control
 - Inhalation unit with Atomizer driver

- Fresenius Medical Care
 - Tube ejector for dialysis machines



ROBOPSY

A Disposable Medical Robot for Lung Biopsies

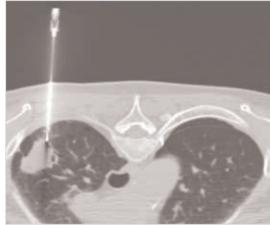
JOHNSON ELECTRIC

"A small robot that sits on a patient inside the scanner that I could control remotely has the potential to drastically improve the current lung biopsy procedure"

- Dr. Rajiv Gupta, Fall 2004

MGH Radiology

... because the current procedure is manual, iterative & time consuming.



Robopsy – Inadequate Current Biopsy Procedure

Insufficiently accurate

- Lesions < 10mm not targetable</p>
- 23% failure to diagnose
- Complications Lung Collapse: 28% partial, 3% severe
- Lengthy & Expensive Average duration 2 hours

Robopsy – Inadequate Existing Solutions

Passive laser guidance systems e.g. SimpliCT

- Manual insertion
- No real-time feedback

Gantry-mounted robots e.g. Innomotion, PAKY-RCM

- Expensive \$\$\$
- No compensation for patient motion
- Large structural loop

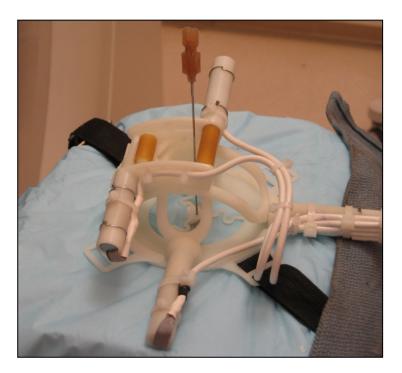
Patient mounted robots e.g. CT-Bot

- Heavy (~2kg) and unnecssarily complex
- Minimal compensation for patient motion

Robopsy - System

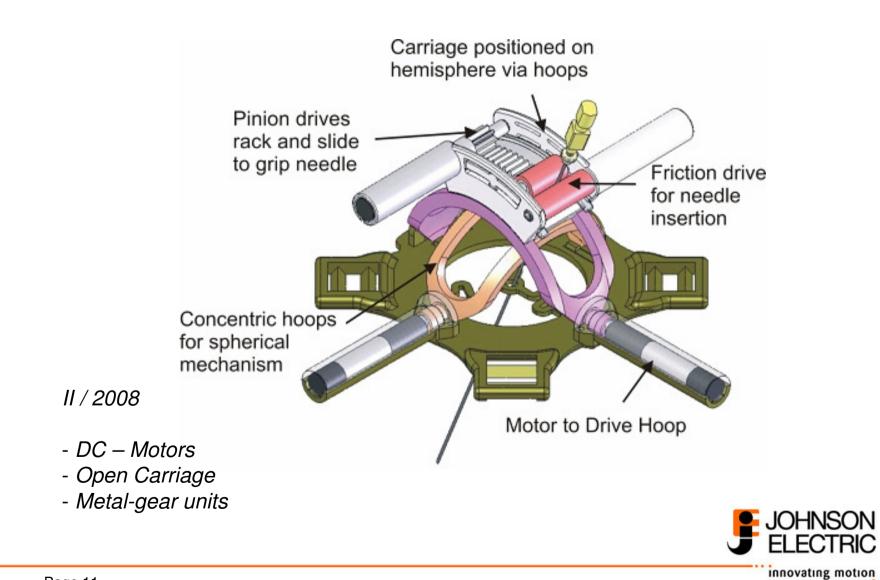
Enables doctor to articulate and insert a biopsy needle while monitoring the CT-Scan in real-time.

- Patient-mounted disposable device
- Control unit on cart beside CT machine
- Remote operation from control room via interface

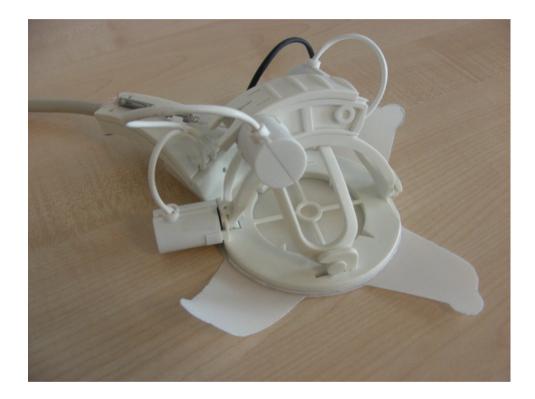

Robopsy - Benefits

Medical Benefits

- Increased procedural success
- Smaller lesions targeted
- Reduced patient radiation exposure
- Reduced complications


Economic Benefits

- Reduced procedure time & increased CT throughput
- Increased procedural ease



Design Stages – I: 07 / 2008

Design Stages – II: 12 / 2008

IV / 2008

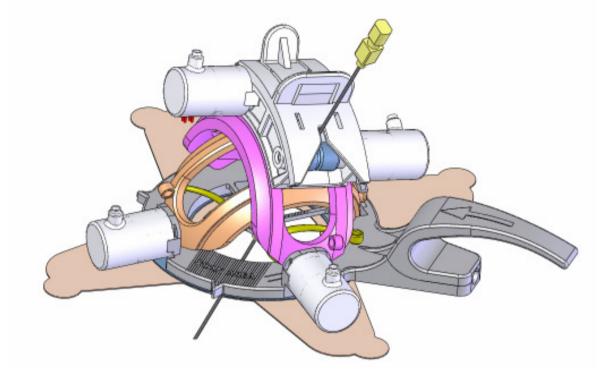
- Stepper Motors
- Closed Carriage
- Plastic Gear Units
- Plaster Patient Mounting
- Cable Management

Design Stages – II: 12 / 2008

IV / 2008

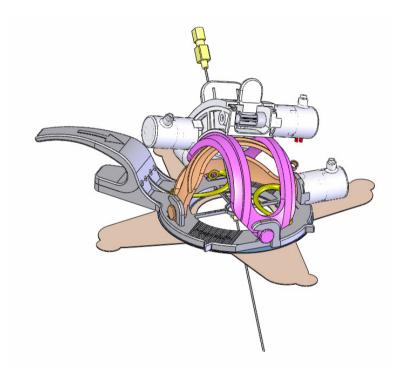

- successful porcine test

Design Stages – II: 12 / 2008


IV / 2008

- successful porcine test

Design Stages – III: 06 / 2009



II / 2009

- FEM optimized Design
- Ergonomically optimized Design
- Backlash free Gears
- Emergency Take Off

Robopsy - System

Simple, sterile, plastic structure

- low-cost snap together parts
- Lightweight 200g
- CT Compliant

Patient mounted

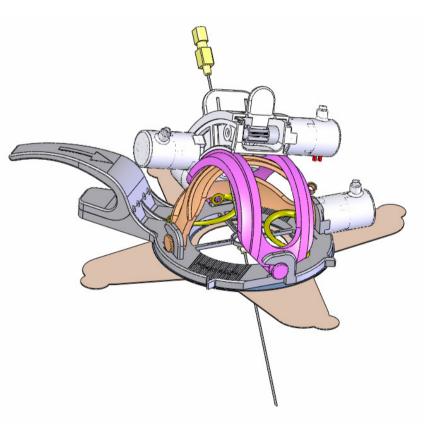
 Respiratory and unexpected motion compensation

Selective needle gripping

- Compatible with organ motion

Universally adaptable

- Needle Independent
- CT Machine Independent


Robopsy – Future Use

Diagnosis

- Lung Biopsy
- Abdominal Liver, Kidney, Pancreas
- MRI Compatible version

Treatment

- RF Ablation
- Targeted drug delivery
- Spinal insertions

Robopsy – potential production

Johnson Medtech

Dedicated to Medical Motion Subsystems Medical quality ISO 13485:2003 Product design incl. DFM Production in cleanroom or clean controlled environment Injection molding, assembly & inspection in Class 8 cleanroom Location: China, Shenzhen-Area

